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This paper defines a model for analyzing the structure of attitude data, iden-
tifies valid methods for identifying distances (resemblances) when estimating
groups of similar people, and shows in practical and theoretical terms when
and why the model should be used. The model allows for respondents being
in a particular social aggregate and for two individual (i.e., ipsative) effects: (1)
of mean response level (an individual responding high or low compared to the
group); and (2) of amplitude (narrow to wide response profile compared to
the group). The appropriate resemblance measure for this model is based on
the Pearson correlation, rp, calculated between objects (e.g., people). Three
alternative transformations of rp were examined: 1 - rp, arccos (rp), and the cord
of angle distance. The best distance measure for the model is arccos (rp) or
arccos (rp)2, although the cord produces similar results. Simulation results show
how some resemblance coefficients (e.g., Euclidean distance) can be inappro-
priate and yield invalid clusters. In using r it is important to consider bimo-
dality in ipsative factors because rp cannot detect clusters that collapse on each
other under ipsative transformation. Finally, it is noted that for some types of
attitudinal data (e.g., performance variables with an absolute zero point), al-
ternative resemblance measures (e.g., cosine) should be considered.

KEYWORDS: Cluster analysis, ipsative measures, resemblance coefficients, attitude
scales, response profiles.

Patterns of behavior depend in part on patterns of attitudes and beliefs
(Burt, 1937; Fishbein & Ajzen, 1975). Individuals in a given social aggregate
are expected to report consistent patterns of behavior and attitudes, while
the response sets for people in different social aggregates may vary substan-
tially (Ditton, Goodale, & Johnsen, 1975; Driver & Knopf, 1977; Jackson,
1989). When inhomogeneous populations are not recognized and accounted
for, the use of certain analysis techniques (e.g., factor analysis) is question-
able, can render research conclusions invalid, and can lead to erroneous
management actions (Beaman, 1975; Beaman & Lindsay, 1975; Cunning-
ham, Cunningham, & Green, 1977; Guilford, 1952; Greenleaf, 1992; Bucklin
& Gupta, 1992). If the appropriate model of reality identifies different social
aggregates with different wants and needs, an analysis strategy is needed to
correctly identify members of the groups and their associated attributes. Only
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when such groups are validly recognized and analyzed properly can man-
agement policies correctly address the demands of competing groups.

This paper is concerned with finding aggregates of people who have
similar attitude profiles, and are thus postulated to display similar behaviors.
We define a model for the structure of attitude data for people who are in
different groups or clusters which allows for (1) individual, ipsative effects
(a respondent having a personal average or modal score across a number of
variables), and for (2) ipsative amplitude effects of narrow to wide response
patterns (standard deviation around a mean or modal deviation). Based on
the model, it is argued that the Pearson Correlation (rp) between objects
(e.g., people) provides the foundation for a valid measure of resemblance
between individuals based on their attributes. Three transformations of rp
are examined as distance measures for cluster analysis to derive groups of
similar people. Of the three, the arccos (rp) or arccos (r )2 is recommended.

An Overview of Cluster Analysis

Cluster analysis is a general set of methodological tools for estimating
groups of similar objects. Similarity is usually based on resemblance coeffi-
cients derived from an object's attributes (Romesburg, 1979, 1990). Appli-
cations of cluster analysis to recreation have evaluated people (objects) on
attributes such as participation rates (Romsa, 1973; Ditton et al., 1975), or
motivations for engaging in an activity (Hautaloma & Brown, 1978; Manfredo
& Larson, 1993). In other recreation studies (Dawson, Hinz, 8c Gordon,
1974; Romesburg, 1979), the objects were elements of the physical environ-
ment (e.g., sites along a hiking trail or river), while the attributes were char-
acteristics of these physical objects (e.g., the presence or absence of different
plant species, the extent of human impact).

Regardless of the choice of object and attributes, cluster analysis typically
includes five steps (Romesburg, 1990). Step 1 involves constructing a data
matrix. In common computer programs (e.g., SAS, SPSS), the rows in the
matrix represent objects (e.g., individuals), while the columns are attributes
(e.g., participation rates or responses on attitude variables). By convention,
cluster analyses exploring resemblance among objects are called Q-tech-
niques; procedures examining relationships among attributes are called R-
techniques (Aldenderfer & Blashfield, 1984; Sneath & Sokal, 1973). This
paper focuses on Q-techniques. Step 2 involves transforming the data (e.g.,
by recoding the attributes' units of measurement into dimensionless units).
Although this step is optional, different standardization procedures can have
dramatic consequences. In step 3, a coefficient measuring the resemblance
as a similarity, or dissimilarity, distance between each pair of objects is cal-
culated, resulting in a resemblance matrix. A variety of resemblance coeffi-
cients are available; for example, Euclidean distance or the Pearson product
moment correlation, rp, (Romesburg, 1990, Chapters 8 and 10). Step 4 in-
volves selecting a clustering method (e.g., UMPGA - Unweighted pair-group
method using arithmetic averages) that may result in a tree giving the esti-
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mated resemblance among objects from which clusters are identified
(Aldenderfer & Blashfield, 1984, Chapter 3; Romesburg, 1990, Chapter 9).
A cluster is a set of one or more similar objects. At one extreme, each object
(person) is considered a separate cluster; at the other extreme, all objects
are grouped into a single cluster. Step 5 examines the goodness of fit of the
resemblance coefficients to the estimated clusters. Some sources recommend
using the cophenetic correlation coefficient (Romesburg, 1990), while others
recommend other tests (Aldenderfer & Blashfield, 1984).

Defining Resemblance: An Example to Aid Intuition

Asking individuals to respond to attitude scales is different than asking
about frequency of participation (Cattell, 1944). Participation questions in-
volve using unambiguous numbers that have common meaning to all indi-
viduals (e.g., I did not engage in the activity [0 participation] or I partici-
pated 3 times). Responses to attitudinal items are influenced by the number
of scale points (Cox, 1980), the inclusion or omission of a neutral point
(Dawes & Smith, 1985; Gilljam & Granberg, 1993), the choice of scale labels
(Krosnick & Berent, 1990), and the numeric values assigned to a rating scale
labels (Schwarz, Knauper, Hippler, Noelle-Neumann, & Clark, 1991). In ad-
dition, some individuals rate higher or lower on average, while others show
wider variability in their scoring (Brown & Daniel, 1990; Greenleaf, 1992;
Hui & Triandis, 1985). These latter differences are the focus of this paper.
Such differences may be attributed to ipsative (personal) effects (Cattell,
1944) or may be influenced by the social group and the society to which the
individual belongs (Cunningham, et al., 1977).

When answering a number of questions, an individual's response pattern
or profile is defined. Questions arise regarding how to analyze these response
patterns (Burt, 1937; Cattell, 1944, 1949; Cattell, Balcar, Horn, & Nessel-
roade, 1969). Figure 1A shows hypothetical data for eight people to illustrate
some problems. For individuals 1 to 4 participation decreases (left to right),
while for 5 to 8 there is an increase. If the Y-axis values are frequencies of par-
ticipation, the individuals represented by the curves are all seen to differ. All
eight "individuals" are statistically unique because the straight lines of Figure
1A would not occur by chance. However, if the Y-axis in Figure 1A is attitude
scores and the goal is to identify people with common rating patterns, differ-
ent interpretations of the data are possible. For example, similarity based on
the "shape of a curve" might imply that persons 1 through 4 belong together
because they have negative slope patterns. Persons 5 through 8 might belong
together because they have a positive slope line. Figure 1A, however, may
represent three or four groups rather than two. Persons 2 and 4 might be
expressing their concerns with activities against the same relative pattern of
importance as persons 1 and 3 are expressing their support of activities.

Assume the curves in Figure 1 are responses to attitude items. Although
persons 1 and 2 generally rate higher than persons 3 and 4, these curves
can be made closer by performing a type of ipsative transformation (i.e.,
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Dx - shows a mean level difference that is constant between two objects or persons
dx - shows a proportional difference between two individuals about their mean

Figure LA Curves showing obvious pattern relationships among variables
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This legend applies to both Figure l.A and l.B
Figure l.B Curves showing no obvious pattern relationships among variables

subtracting out an individual's high or low scoring tendency as expressed by
the individual's mean, mode or other value). Romesburg (1990, p. 94) calls
this an additive translation. For persons 1 and 2 who rate with a wider swing
than persons 3 and 4, multiplying values by a positive scale factor after sub-
tracting out individual means changes amplitude so that any negative slope
curve can be made close to another one. The amplitude transformation is
another ipsative transformation that forces variation around means to a com-
mon unit for comparing data (Hicks, 1970; Jackson & Alwin, 1980). Using a
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negative multiplier to change a positive slope pattern to a negative slope
results in positive slope curves denned as similar to negative slope ones, but
such reversing or related mirror image transformations (Cohen, 1969) are
not allowed here. In our analyses, when two patterns are similar but one
pattern is the shifted negative image of the other, it is assumed that maxi-
mum dissimilarity has been reached.

To recognize similarities between individuals' attitudes, one must deter-
mine the level of similarity between attitude patterns. An individual's mean
and amplitude should not be treated as irrelevant in examining these re-
sponse patterns (Cattell, 1944; Hicks, 1970; Hui & Triandis, 1985). The dan-
ger is that individual differences in mean or amplitude on response scales can be
deceptive. Such factors can be confused with variance that should not be
measured (Cattell, 1949; Romesburg, 1990, Chapter 8). For example, if
curves 1 and 2 are considered similar, yet simply separated by 2 units, a
similarity measure such as the sum of squared differences between the two
curves should not count the Dx's shown (e.g., see Cronbach & Glesser, 1953).
Squaring differences to compare profiles should be taken after a raw score
ipsative transformation of both curves to a mean (e.g., of zero) has been
applied. A second raw score transformation is also needed to change all
amplitudes to unit amplitudes. The dx's shown in Figure 1A illustrate ampli-
tude related distances between curves that should not be in a sum of squares
measuring pattern difference. Because ipsative factors carry information
(Greenleaf, 1992), they cannot be ignored.

Contrary to what one might infer from Figure 1A, finding a pattern is
not trivial. Figure IB shows the same data as Figure 1A except that the order
of the variables is changed. No patterns are obvious. Because pattern rec-
ognition should not depend on variable order, a valid analysis technique
must recognize the patterns that are not seen in Figure IB as clearly as the
patterns seen in Figure 1A.

A Formal Introduction of Models

Wilderness users, campers, people using a city park, or beach visitors
are not homogeneous groups. Subgroups can be distinguished by different
attitudes. One may wish to develop attitude scales for people in different
social aggregates based on a variety of attributes (Brown & Daniel, 1990;
Schroeder, 1984; Greenleaf, 1992). To understand if unique social aggregates
underlie a scale, a model of how people in subgroups respond to attitude
questions is necessary (Zubin, 1936; Burt, 1937; Cattell, 1949; Cattell, et al.,
1969; Cohen, 1969).

Figure 2 provides an intuitive basis for a formal model.1 Four "general"
mean values, UA, around which on average an aggregate's members respond

'Three dimensional vectors are used because 3-D vectors and related graphics are readily un-
derstood. Grenier and Beaman (1993) present a similar example for 24 variables (24 dimen-
sional vectors) and 5 clusters.
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on attitude questions are shown. UA is a vector [e.g., (Uj = 4, 4, 4) (U2 =
4.15, 4.15, 4.15) (Us = 4.25, 4.25, 4.25) or (U4 = 4.5, 4.5, 4.5)]. Associated
with the different UA vectors, are PA, pattern vectors, for 4 different aggre-
gates (Figure 2). The four PA vectors, together with their mean vectors, rep-
resent 4 hypothetical social aggregates that do not have the same attitudes.
The data points in Figure 2 (labeled by 1, 2, 3, 4) represent people in four
clusters. Twenty five people are shown in each cluster. Each point is defined
by adding a group mean value, a pattern value (CAPA), and variable-by-vari-

C luster pattern vectors
P, = (.707.0.-.707)
P, = (-.707,0,.707)
P̂  = (.41,-.82,.41)
P4 = (.61,-.77,.16)

Cluster mean vectors
U, = (4.00,4.00,4.00)
U2 = (4.25,4.25,4.25)
Tj3 = (4.5, 4.5, 4.5 )
U4 = (4.15,4.15,4.15)

amplitude
crosshair Cluster structure

"side" view

Cluster 2

i
Cluster 1

Cluster structure
the mean vector

Cluster 3 _j

i^- .-
-"/•' •" Cluster 4

viewed along

Origin = (0,0,0) \ /

For an enhanced 3D effect, see Figure 4.

This figure shows the basic vectors structure (including variable by variable random variance)
tor the model defined by Equation 1. Four clusters with mean and pattern vectors are shown.

Figure 2 Basic vector structure for Equation 1 with variable by variable random
variance
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able response variability (random "error", e^). Data in Figure 2 do not re-
flect ipsative mean or amplitude factors. In contrast, data points in Figure 3
were created with ipsative factors being simulated without variable-by-variable
random error.

Two individual (ipsative) aspects of attitude responses can be noted (Fig-
ure 3). The first concerns an individual's mean level of high/low rating. The
second is amplitude which refers to individual narrow/wide swing patterns.
For people in a group with similar patterns of attitudes, some generally re-
spond high on scales, others low, and the rest between. An individual, i, may
generally rate below the group's general mean of 4 (e.g., rate with a personal
factor u^j = —1), while another rater, j , in the group rates above the group

Hypothetical points
A, B, C and D are
on the distorted
circles of clusters 3
and 4 in the planes
of ipsative variance

Cluster 1

Ipsative means and amplitude
viewed along the mean vector

"For an enhanced 3D effect, see Figure 4.

Figure 3 Ipsative means and amplitudes without variable by variable random
variance
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average. The high rater with uAJ = 1 has an overall mean 4 + 1 = 5. In
addition to high and low raters, "extreme raters" and "conservative raters"
can be identified. A general pattern, PA, with an average (or modal) ampli-
tude CA gives CAPA. This is a "typical" or "average" pattern for a group. A
conservative rater might have a pattern amplitude of CA + cA (e.g., 2 + [ — 1]
= 1), while an extreme rater may have an amplitude factor of 2 + 1 = 3.
Both share the pattern PA, but as described for Figure 1, the shared pattern
is more easily recognized with a common amplitude of 2 rather than with
two different amplitudes.

The preceding provides the rational for Equation 1. For individual, i, in
aggregate A, individual responses on attitude questions allow for individual
(ipsative) scale variability, uAi, as well as for a generally high/low rater, and
an individual (ipsative) scale amplitude variability, cAi. The error term, eAi,
for random variable-by-variable error is treated as additive since scales are
generally bounded above and below. We believe that a term like (CA + cAi)
with error (PA + eAi) showing higher variable-by-variable "error" for persons
who have wide swings (large CA + cAi) simply cannot be a good approxi-
mation of reality, where scales typically have quite narrow bounds (e.g., 5, 7,
or 9 point scales).

Equation 1: XA>i = (UA + uKi) + (CA + cA|i) PA + eAJ

where:

• XAi is a vector of scores, [x(l,i), x(2,i), ... x(N,i)] where A is the social
aggregate and i is the individual responding for variables, v, with v =
1, 2, ..., N.

• UA is a vector denning the general mean level for a pattern of scores
for a social aggregate (e.g. see lines 1 of table 1 [U(A), U(A), ... U(A)]
= [4, 4, .... 4])

• U;̂  is a vector that defines an individual i's average displacement from
UA (e.g. [-0.7, -0.7, ..., -0.7]).

• CA is the "usual" amplitude of a pattern PA, for a social aggregate A.
• Cj A is a constant that reflects an individual's amplitude in relation to

CA (broader, qA > 0, or narrower, if 0 > CiA > — 1).
• PA is a vector [PA(1), PA(2), ..., PA(N)] for an aggregate, A defining

an average pattern, centered around UA, by being orthogonal to it
(yPA(i) = 0).

• e^j specifies random variables that defines the variable by variable var-
iance associated with each pattern variable, [P(l), P(2), ... P(N)].

Understanding Resemblance Estimation Problems Associated with
Cluster Membership

Analyses that refer to the existence of differing groups distinguishable
by differing attitudes implicitly assume Equation 1 or some similar equation.
In many studies, however, after making it clear that there are differing



176 BEAMAN AND VASKE

groups, researchers compute overall average ratings, and search for patterns
using multivariate techniques such as R-mode factor analysis. Because of the
mathematical structure of data based on Equation 1, cluster analysis should
occur prior to application of other multivariate techniques (Everitt, 1979, p.
170). Factor analysis and overall means that ignore aggregates are generally
inappropriate (Guilford, 1952; Cattell, et al., 1969). Although the model
based on Equation 1 is only a reasonable approximation for some data, it is
an appropriate starting point for analyzing many attitudinal data sets cur-
rently collected in leisure research.

For interval scale data (e.g., frequency of participation), cluster analysis
based on Equation 2 is appropriate (Beaman & Lindsay, 1975):

Equation 2: XAi = UA + PA + eAi

Equation 2 implies a model with variable-by-variable variation about a
pattern based on data where scale and origin do not depend on the individ-
ual. Many cluster analyses implicitly treat data as interval scale without in-
dividual effects, and define resemblance by Euclidean distance (Romesburg,
1990, Chapters 8 and 10). Because of individual (ipsative) effects, the resem-
blance measures that may be appropriate for frequency of participation in
activities are not necessarily appropriate for attitude data conforming to
Equation 1. Even for participation data, however, one must consider that the
frequency may have an eAi that is highly skewed meaning that certain clus-
tering approaches that tend to find symmetric clusters will not produce valid
results. Alternative models are needed for a variety of different types of at-
titude data. Methodologically, our treatment of attitude data is consistent
with research findings on scale properties (Havlicek & Peterson, 1977;
O'Brien, 1979) and theories on level of measurement (Borgatta & Borhn-
stedt, 1980).

Understanding the resemblance coefficient estimation problems when
data conform to Equation 1, involves defining resemblance appropriately. As
with all cluster analysis, the goal is to place similar things together and to
put dissimilar things in different clusters (Everitt, 1980; Aldenderfer & Blash-
field, 1984). If two people are in the same cluster, the distance between them
should be a positive number (e.g., near zero) that reflects only residual ran-
dom error. This residual error is the random differences between "within
group" data. If people are in different clusters, inter-cluster distance com-
bines with random error and should yield distances that are on the average
larger than within cluster distances. Distance in clustering is frequently re-
lated to a sums of squares of differences (Equation 3), called Euclidean
distance. SAS, for example, only supports computing distances this way (ei-
ther with or without variable standardization).

Equation 3: D(i,j)2 = Sum Over Variables (((x(v,i) - x(v,j))2)

To visualize the estimation problem raised by a model based on Equa-
tion 1, it is useful to examine how data that conform to the model typically
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look in space. In Figures 2 and 3, all general means lie along the mean line
going through the middle of the "first quadrant." As indicated, P1; P2, etc.
are average pattern vectors that are at a right angle to the end of their mean
vectors. In both figures, each pattern vector defines part of a "crosshair."
The data for a cluster are found "around" the crossing of crosshairs. Data
with no random error and no individual mean or amplitude factors are only
composed of a mean component and a pattern component; such observa-
tions fall exactly at the crossing of the crosshairs. In the figures, the crosshairs
are positioned inside "distorted circles" that define the general areas in
which most simulated observations lie.

Introducing variability as individual deviations from group means, uAi,
results in movement along the direction of the general mean; a crosshair
line parallel to the mean vector. In other words, changing the mean by an
ipsative factor causes the pattern vector to be repositioned on a crosshair
line up or down along the mean vector. The pattern vector here is by defi-
nition orthogonal to the mean. Ipsative variation in amplitude, cAi, results
in movement along the amplitude crosshair line defined by the pattern vec-
tor. This is in a direction perpendicular to the general mean, and thus per-
pendicular to the ipsative mean line that is parallel to the general mean
vector. The data points in the Figure 3 present the results of simulating
combined ipsative amplitude and mean variation. The data illustrate how
combining individual mean and amplitude variation causes spreading of data
within clusters even when there is no random variable-by-variable variability. This
spreading or individual (ipsative) variability is within cluster variance. The
distorted circle patterns of data for clusters with the variability shown in
Figure 3 illustrate that individual amplitude can go up to a large value, but
only down to zero. This effect was achieved by simulating variation by tri-
angular distributions, and skewing the distributions using exponential trans-
formations.

Data for the simulated aggregates are most dense near the crosshairs,
but since ipsative mean or amplitude variability could also be bimodal, high
density could appear in a variety of patterns. The paddle shaped "pattern"
of points of Figure 3 result from movement in two dimensions, amplitude and
mean, which produces a plane. For each cluster, all ipsative scattering for
each pattern, PA, only lies within a plane (illustrated in Figure 3 by the view
"almost" down the mean vector). There is no ipsative variability outside the
ipsative planes of clusters. Variability outside these planes only occurs when
variable-by-variable variation (i.e., random error) is introduced. The appear-
ance of random error without ipsative variation is seen in Figure 2 by the
view down the mean vector.

Distinguishing random variable-by-variable error from ipsative error lies
at the heart of the problem of establishing who is in which cluster. Figure 2
shows random variable-by-variable variation without ipsative variability, while
Figure 3 presents only ipsative variability in individual means and amplitudes.
The balls of points in Figure 2 depict clusters as they are typically visualized
when Euclidean distance is used in cluster analysis. All variability in these
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clusters is random and occurs around the intersection of crosshairs. The balls
are the result of simulating data using only the terms of Equation 1 that are
also in Equation 2. For this type of data, the Euclidean distance resemblance
measure is appropriate and is better than several alternatives (Romesburg,
1990, Chapter 9).

The level of simulated random variable-by-variable error shown in the
figures is large enough to produce variation around each crosshair, yet some
separation between the "balls" of different aggregates is apparent. The var-
iability used amounts to a reasonably high probability that a person will re-
spond above or below their clusters average response. Equation 1 implies
that the variable-by-variable balls seen around the crosshairs in Figure 2 can
appear at all possible "individual points" of Figure 3. The variabilities of
Figures 2 and 3 are combined in Figure 4 which shows 25 randomly selected
combinations of individual amplitude (cAi) and mean (u^) factors for each
cluster. In Figure 4, the "balls" of Figure 2 spread over the planes of Figure
3 resulting in long flat blobs that resemble thick tennis racket heads.

The preceding addresses why data that are clearly clustered in Figure 2
are not clearly clustered in Figure 4. If the dissimilarity between individuals
is computed using a traditional Euclidean distance as in Equation 3, one can
argue that incorrect results are obtained. The observable closeness of points
A and B, and of C and D in the Figure 4 clearly applies to a large number
of cluster members. Points A and B, and points C and D are close, but A
and D are in cluster 4, while B and C are in cluster 3. Using Euclidean
distance (Equation 3) to cluster the raw data may result in improper assign-
ment of observations to clusters because the distances between objects does
not correspond with cluster membership.

The ipsative variation in individual means and amplitudes resulting in
within cluster variation does not exist for data that conform to Equation 2.
Individual or ipsative factors for that model are implied to be zero. For
Equation 1, however, as the A, B, C and D illustrate, individuals in the same
cluster may have data that extend over an ill-defined range. Using algorithms
for finding clusters that look for hyperspheres, these blobs will not be prop-
erly found. This estimation problem does not arise in clustering where Equa-
tion 2 applies for equal eA; and one has spheroids or ellipsoids if e^ are not
all equal (e.g., see SAS, 1988, Chapter 6).

Distances computed using raw data shown in Figures 1, 3, and 4 are
expected to measure ipsative differences between individuals as well as pat-
tern differences (Cattell, 1949; Cronbach & Gleser, 1953). This drastically
distorts or biases the "real" or theoretically correct distance pattern for sit-
uations like those illustrated. There are, however, alternatives to distance
computed by comparing raw data using sum of squared differences as spec-
ified in Equation 3. These involve both standardization and the use of a
variety of resemblance coefficients (Romesburg, 1990, Chapters 7, 8 and 10)
to compensate for individual (ipsative) variability. The solution to correctly
measuring similarity or distance for people who are in the same group based
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c .' Spurious "cluster" 2

Real cluster
properly recognized

Spurious "cluster" 1

\.•'•''' / ! .*\S' J ; :"-! Real cluster
i- . , 1 '•",^. '" i \ properly recproperly recognized

This figure illustrates what real data would look like when the random variable by variable
variance of Figure 2 is combined with the ipsative scattering of individuals shown in Figure 3.
The polygons differentiate "real clusters" from "spurious clusters". The points A, B, C, and
D correspond to the points in Figure 3.

Figure 4 Ipsative scattering with variable by variable random variance

on Equation 1 lies in reducing the variation associated with (1) individual
high/ low ratings and (2) individual variation in amplitude.

Individual h igh/ low ratings can be compensated for by removing an
individual mean, mode, or some such measure. Let IMS be an individual
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ipsative mean correction for an individual, i. The ipsative transformation is
xm(i,v) = (x(i,v) — IM;). After eliminating individual means, one can com-
pare xm(i,v) values for two individuals using Equation 3. For the Equation
1 model, however, there is still the ipsative amplitude variability between
individuals to be considered. Figure 5 shows the results of the transformation
to xm(i,v). The distorted circles become more narrow and all have the same
origin. Because clusters remain elongated, using Equation 3 with xm(i,v)

Central axes for
clusters 3 and 4

Apparent clusters without
amplitude correction for
ipsativity

This figure illustrates what the real data from Figure 4 would look like when ipsative centering
is corrected. The points A, B, C, and D correspond to the points in Figure 3.

Figure 5 Correcting for ipsative means
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values can still result in many within cluster distances measures that are large.
Because clusters are oblong, many points in a cluster can be closer to other
clusters than to points within their cluster. Compared to Figure 4, points C
and D from clusters 3 and 4 are relatively further apart but they are still
closer to each other than to their respective cluster members B and A. Elon-
gation as a result of ipsative amplitude must still be corrected.

A value for normalizing individual amplitude can be estimated from a
person's range of deviation in variable values or by a computation such as
the standard deviation in or vector length of the individual's variable values
(e.g., xstd(i,v) = xm(i,v)/amp(i)). Both clustering and theoretical issues
must be considered (Greenleaf, 1992, p. 179; Romesburg, 1990, pp. 84-85,
Equations 7.5-7.8)2 for this and related standardizations. When amplitude is
defined by (length = Ex(i,v)2)1/2) which is proportional to standard devia-
tion, the object standardized variables are vectors of unit length. Such vectors
all end on the surface of a unit hypersphere which is shown as a circle in
Figure 6. In the case of 3-dimensional data, subtracting out the mean caused
the loss of 1-dimension so the Xstd(i,*) = (xstd(i,l), xstd(i,2), xstd (i,3))
vectors all end on a unit circle, a sphere in two dimensions. The numbers 1
through 4 on the circle show the cluster membership with ipsative factors
and possibly ipsative information removed (Greenleaf, 1992). We are in a
space in which distance should be measured. The clusters are clearly rec-
ognizable but there is overlap. The points A and D and the points B and C
fall on each other rather than showing an inappropriate pattern of separa-
tion for the clusters as they do in Figures 3, 4, and 5. One way of finding
clusters involves locating areas of high density (Figure 6). To clearly separate
clusters 3 and 4 in Figure 6, however, one needs to also consider ipsative
factors.

Selection of a Good Measure of Resemblance

Using xstd(i.j) values in Equation 3 to find similarities or dissimilarities
involves computing Pearson's r for objects. This occurs because in object
standardization about a mean of zero, D(ij) = (2(xstd(i,k) — xstd(j,k))2)1/2,
where the k refers to variables. The formula defines the distance between
the tips of 2 unit vectors that determine an angle so it gives the length of
the cord of the angle. However, squaring and summing, D(ij) =
(2(xstd(i,v)2 - 2(xstd(i,v)xstd(j,v) + xstd(j,v)2)1/2 . But since xstd(k,v)2 for
k = i or j is 1 by the definition of xstd, and 2xstd(i,v)xstd(j,v) = rp, D(ij)
= (2 — 2 rp)1/2 = 2(1 — rp)1/2. Deductively, one now sees that rp, the cor-
relation between two individuals' responses, provides the basis for a better
approach for comparing two patterns conforming to the model defined by
Equation 1 than Euclidean distance (Stanley & Beaman, 1993). Euclidean
distance based on raw responses to attitude scales includes the ipsative mean

2It should be noted that Romesburg reverses rows and columns compared to how most SAS and
SPSS users consider them. Columns are objects (e.g., people), and rows are variables.
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CORDS
BETWEEN 2
INDIVIDUALS

CLUSTER
3 CENTRE

\
3 1 '
CLUSTER
3 TO 4 A AND D

CLUSTER 4
CENTRE

CLUSTER 1
CENTRE

The points A, B, C, and D correspond to the points in Figure 3.

Figure 6 Data transformations to visualize the rp coefficient

and amplitude differences, resulting in a biased measure of distance (Cattell,
1949). The use of rp as a resemblance measure is not new or unique (Cattell,
1949; Cohen, 1969; Holley & Guilford, 1964), but its application to recrea-
tion research has not been found. The fact derived here is that a model of
behavior defined by Equation 1, requires rp as a basis for a valid distance
measure.

Since a valid distance measure should be a positive monotone strictly
increasing function, the values of r , per se, do not define a distance func-
tion. However, 1 — rp, (1 — rp)17 , and 1 — rp

2 have been suggested as
distance measures (SAS, 1988). Three related distance measures based on rp
are defined in Equation 4:

Equation 4A D(ij) = 1 — r

Equation 4B
Equation 4C

D(i,j) = arccos (r )
= (S(xstd(i,v)

xstd(j,v))2)1/2

The Correlation Distance Measure
(e.g., Holley & Guilford, 1964)
The Angular Distance Measure or Arc
Cord of Angle Distance

- rp
\l/2
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Figure 6 depicts the correlation measure in relation to angular distance
between two people and the cord of the angle distance. Because the simu-
lation included only 3 variables, all people are found on a circle. With 4
variables, all people would be on a sphere. Regardless of the number of
variables, however, comparisons between two people will result in a circle
denned by the two individuals' pattern vectors. Two different points on a
hypersphere define a unique great circle route (i.e., the shortest distance).
The angle and cord measures of distance should be thought of in relation
to this circle.

Some examples may clarify the relationship of the three distance mea-
sures. If two individual's correlation is 1, the two people share a common
pattern vector with a zero degree angle to each other. When the data for i
and j are identical, r = 1, and 1 — r, the dissimilarity or distance is zero
(Equation 4A). Using Equation 4B, the angle between i and j is also zero
since arccos (1) = 0 . Equation 4C gives the length of the cord of the angle
distance which is also zero. If person i is in cluster 1 and person j is in cluster
2, their patterns are opposite and, if there is no random error, r = — 1. The
arccos of —1 is 180°. The cord of a 180° angle is simply the diameter of the
unit circle so distance as defined by Equation 4C is 2, which is also the
distance defined by Equation 4A. When r = 0, the arccos (0) = 90° (Equa-
tion 4B). The correlation distance is 1 — 0 = 1 (Equation 4A). The cord
distance is 21/2 = square root of (I2 + I2), since the cord is the hypotenuse
of a triangle formed by two radii of length 1 that are at right angles.

The three resemblance measures in Equation 4 have not been defined
to range from zero to 1 (or to some other common maximum), because
these coefficients do not move from 0 to their maximum in the same way.
Figure 7 shows how these and other related curves change with angle. Be-
cause the length of the cord of a unit circle is approximately equal to the
angle in radians for "small angles," two of the three distance measures are
very similar. At 90°, the angle in radians is 1.57, while the arc is 1.41; at 60°
the angle is 1.05 while the arc is 1.00.

Though the absolute numeric value of a distance measure is not im-
portant, the merit of one function as opposed to another is in the effective-
ness of recognizing which cluster a person is in. For Equation 4A (D(i,j) =
1 — rp), distance changes slowly as the angle increases, then changes rapidly
(Figure 7). In general, 1 — rp represents a whole class of S-shaped functions
in which distance increases slowly, then for a range of angles (e.g., 60° to
120°) increases rapidly (See curves A, D, & E). Above 120°, 1 — rp again
increases slowly. This does not have the same appeal as the two alternative
measures, since an appropriate distance measure should increase uniformly
(have a constant or monotone first derivative); not increase slowly, then in-
crease quickly, then increase slowly as one nears 180°.

Of the other two transformations of rp, the meaning of the value of
angle of separation between vectors is more easily visualized (Equation 4B),
than the length of the cord (Equation 4C). On the other hand, Equations
4B and 4C give virtually identical distances up to 90° Although the linear
relation between angle and cord breaks down to some extent above 90°, this
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Functions of Pearson's r Between Objects

Function Values

-*-d=l-r
-"-d=The Angle
•*-d=TheCord
-e-d=sqrt(l-r)
— d=(l-r)**2

180

Angle Between the Objects
Figure 7 Five alternative distance functions

relation is less problematic "theoretically" than a S-shaped relation (1 - rp).
One should note from Equations 4A and 4C that one has gone from the S-
shape of 1 — rp to a uniform increase by taking the square root of 1 — rp.
In many clustering programs, distances based on Equation 4C would be
squared, meaning that clustering criteria would really be based on an S-shaped
curve of distance squared (see Figure 7). Practically, if points are separated
by 90° and in the same cluster, the difference in cord, 1 — rp and angular
distance is simply not expected to significantly influence correctly associating
points with their appropriate clusters.

In summary, a resemblance measure is not universal but rather a denned
concept. Its merit lies in being good for the job intended. For our ipsative
model (Equation 1), a transformation of rp, is the basis of a valid distance
coefficient to use. Of the three alternatives in Equation 4, 1 — rp, is rejected
as "best" because it does not increase uniformly. The angle by definition
increases uniformly with angle. This increase has intuitive appeal. From an
interpretation perspective, angle can be thought of as a distance increasing
just as distance between two objects increases on the surface of the earth.
The cord as a distance measure does not have the same intuitive appeal: (1)
one does not measure through the earth and (2) 90° is easier to understand
than 1.41. The two measures, however, will give virtually identical results. In
either case, the square of any angle or cord functions has appeal since one
can reasonably believe that as angles get larger, distance should increase
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more rapidly and increase one's confidence that the points are very dissim-
ilar. However, when the cord distance is squared, one gets a measure pro-
portional to that defined by Equation 4A (i.e., the S-shape). Therefore, al-
though Equations 4B and 4C are similar, we recommend the angular
measure [arccos (rp)] or its square [arccos (rp)2]. It increases "uniformly"
up to 180° and is easier to interpret than the cord (Forgy, 1965).

Finally, it is important to note that although this paper has concentrated
on Equation 1 and its relation to rp, there are some situations where alter-
native attitudinal models and resemblance measures should be considered.
For example, in importance-performance analyses, attitudes about perfor-
mance on service delivery (e.g., clean washrooms, safety) can be viewed as a
scale with an absolute zero. If the washrooms are not clean or there are no
provisions for safety, performance is zero. In these situations, a model of
performance ratings for individual, i, in aggregate, A, for a variable, v, can
be defined as:

Equation 5: X ^ = (CA + cAi) (PA,V + eA,iv)

where the notation is based on Equation 1. However, 2PAv ¥= 0 and PAv ^
0 for all v.

Equation 5 indicates that there are wide and narrow swing respondents
based on CAi > 0 or CAi < 0. In addition, individuals show variation about
their aggregate's PA as indicated by eAiv. There is no ipsative mean term,
however, since there is an absolute zero point; a situation similar to forcing
a regression line through the origin. In this instance, computing an indi-
vidual's ipsative mean is not appropriate, since the mean will have statistical
error associated with it. Subtracting out the mean introduces error and re-
sults in less accurate findings than there could have been. Thus, even though
Equations 1 and 5 are closely related, Equation 5 defines distance as a func-
tion of the angle between two raw data vectors.

The appropriate distance measure for Equation 5 is the "cosine" mea-
sure, which compares two vectors, objects, independent of scale. This resem-
blance measure is appropriate for attitude data similar to performance scores
that have an absolute zero (e.g., no performance on a given service). One
could argue that importance also has an absolute zero. Whether a respon-
dent is disposed to think of importance or performance as floating or an-
chored to some absolute zero depends on the context, and how the questions
and response sets are structured. When performance has an absolute zero
for each cluster, vectors of average performance emanate from the origin
and go to the cluster center. Elongated scatterings of points occur in the
general direction of these vectors, not perpendicular to a mean vector as
shown in Figure 2.

Discussion

Based on simulation of individual differences in mean level and differ-
ences in pattern amplitude, the graphics presented here illustrate how dis-
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tance measures are affected and why clusters are confused with each other.
The dual ipsative transformation, a form of object standardization, eliminates
this confusion for attitude data conforming to Equation 1. Although our
findings are illustrated using only three variables, similar results have been
produced by Grenier and Beaman (1993) using 24 variables and 5 clusters.
Based on Equation 1, adding more variables does not result in less ipsative
variability compared to pattern variability. Every variable has the ipsative
mean and amplitude factors. Assuming Equation 1 is valid, the more varia-
bles included in the analysis, the more accurately the ipsative factors can be
estimated and thus effectively separated from the pattern.

In the Grenier and Beaman (1993) analysis, simulation was used to pro-
duce 27 situations of the three types of variability: (1) narrow to wide vari-
ability in individual means, (2) individual amplitude, and (3) variable-by-
variable random error. Clusters ranging from clearly separated groupings to
clusters with no apparent structure were produced. For Grenier and Beaman
(1993), traditional distance measures produced poor results compared to
distance based on Equation 4A. As more and more of the three types of
variability were introduced, only r approaches gave distances that resulted
in most people being classed in their appropriate cluster. In other words,
distances based on r defined correct clusters after the other methods failed.
Because 1 — rp worked when Euclidean distance did not, it was concluded
to be a good measure to use when in doubt about whether there are ipsative
effects.

Stanley and Beaman (1993) used both raw score variable standardized
Euclidean distance clustering and Equation 4B, angular distance, for clus-
tering data from an importance-performance study. Using Euclidean cluster-
ing, 5 clusters were found with 206 of 465 observations not in clusters. Three
of the 5 clusters had under 30 members; one cluster had only 13 (a minimum
cluster size of 12 was specified). Using the arccos of rp distance, only 107
observations were not in clusters and larger clusters were found. Points
placed in a cluster by one distance were not generally found in a particular
cluster determined using another distance. From our results (Figures 4 and
5) and those of Stanley and Beaman (1993), we believe that Euclidean clus-
tering based on variable standardized raw responses confuses spherical areas
of apparent "high density" in the data with clusters. For Stanley and Beaman,
"high density" in the raw data was really the ends of distorted circles coming
close to each other near the mean vector (as illustrated in Figure 5 here).
The reason for small clusters is that the far ends of distorted circles were
"recognized" as clusters after certain areas near the mean vector were con-
fused with clusters.

Although resemblance measures based on r have been reported in the
literature for 50 years, their specific relation to the model presented here
and their application in leisure research is not evident. In part, the appli-
cation of Equation 1 and r has been limited because the most common
statistical packages such as SPSS and SAS have not supported computing rp
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as an option for input data to cluster analysis.3 With the release of SPSS for
Windows, however, rp is available. One can use the techniques described here
by using a clustering procedure that accepts distances based on object stan-
dardized input or that allows input of a resemblance matrix. Both SPSS and
SAS offer such options. To use these latter approaches, however, the data
must be "pre-processed" to create object standardized data or distances in
one of the acceptable forms for input. This is obviously an impediment to
use of rp based measures.

This paper raises several analytical considerations. First, the data should
be object standardized (not variable standardized). Second, a clustering pro-
cedure should not automatically perform a variable standardization on the
object standardized data. In SAS and SPSS for Windows, for example, one
can suppress variable standardization in input data for hierarchical cluster-
ing. When Euclidean distance is computed directly from object standardized
data one gets distances based on Equation 4C (the cord); one of the rp based
distances. Third, if one needs a procedure that will handle a large number
of cases effectively. FASTCLUS (SAS) or Quick Cluster (SPSS) can be used
once the data are object standardized.

There are three cautions to consider when using rp based distances im-
plicitly or explicitly. First, since information can be lost when computations
are performed, one must consider keeping and using this information
(Greenleaf, 1992). When clusters have the same or very similar PA vectors
but different cluster general means, Equation 1 is a valid model. For clusters
based on rp, however, one must definitely examine individual means to dis-
tinguish clusters with similar PA (Cattell, 1949). As discussed in relation to
Figure 1, the curves 1 and 2 could theoretically identify different clusters
than curves 3 and 4. One can visualize how clusters can collapse on each
other by tracing what happens in Figures 4 to 6 with clusters 3 and 4 as
ipsative corrections are applied. If these clusters had been directly above
each other with different means, they would appear as a single cluster in
both Figures 5 and 6. Using rp based measures causes clusters with similar
patterns but different means to collapse onto each other so that observations
with a similar pattern are literally put into one cluster. Examination of IM;
(individual means), however, can be used to separate the observations into
their appropriate clusters. Cluster estimation problems should routinely in-
volve such an examination.

Second, amplitudes present a potential technical problem. In defining
an amplitude one makes an estimate. Mathematically, the length of the vec-
tor is convenient for measuring amplitude and yields the "clean" unit hy-
perspheres seen as a circle in Figure 6. Unfortunately, for some distributions
of observations, the standard deviation calculated in the usual way is highly

Specialized cluster analysis programs that compute transformations of rp directly from raw data
have been available for years (See Romesburg, 1990, Appendix 2).
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variable. If one has two unbiased estimates of amplitude, the first being
highly variable compared to the second, the latter should be used. Greenleaf
(1992) documents a variety of other issues related to amplitudes and infor-
mation loss.

Finally, when the data conform to Equation 1, rp should be used. If,
however, one has data similar to performance data, Equation 5 is appropriate
and rp should not be used. Determination of which model and distance
measure are most appropriate for a given data set may necessitate several
analyses. Care must taken, however, to ensure that the data transformations
do not give the impression that a method is superior simply because it trans-
forms significant differences between observations into insignificant ones
(e.g., as can occur when using log transformations in regression). A concern
must be that reducing the elongation of collections of points more and more
as points are further from a central value artificially creates concentrations
of points that are then defined as "clusters."

By introducing formal models and arriving at an appropriate resem-
blance coefficient for a particular model (e.g., Equations 1, 2 or 5), analysts
have criteria to use to reduce the risk of an inappropriate distance measure
choice. We have not addressed, however, the matter of which cluster algo-
rithm to use to actually find clusters from a distance matrix. Aldenderfer
and Blashfield (1984) provide a good presentation of the theoretical and
practical implications of using certain techniques. Following their advice,
computing clusters using several clustering techniques and performing tests
for cluster validity is a recommend strategy. Both the SAS and SPSS manuals
provide examples that illustrate the advantages and disadvantages of differ-
ent clustering techniques. Regardless of the clustering procedure, minimiz-
ing ipsative error before searching for clusters is an essential step in getting
better results. Allowing ipsative factors to bias distance, distort the density
measures, or otherwise mislead the cluster analysis is not appropriately com-
pensated for by standard clustering algorithms.

A variety of other issues need to be addressed to advance the research
presented here. First, the research showing that ipsative mean and amplitude
carries information (Greenleaf, 1992) challenges the simplistic view that
these ipsative factors can be ignored in predicting behavior and confirms con-
cerns raised for half a century (Cattell, 1944). Multiple segment choice mod-
els offer a powerful potential tool for sophisticated analysis in this area
(Bucklin & Gupta, 1992). Second, the issues raised by other researchers
(Greenleaf, 1992; Grenier & Beaman, 1992; Stanley & Beaman, 1992) suggest
that existing data should be re-analyzed to determine how the results change
when using rp or the "cosine." Third, recent research (Schwarz, et al., 1991;
Gilljam & Granberg, 1993) addresses issues regarding distortions in scales,
and the need for negative "anchors." Since distortion of distance patterns
causes problems in determining cluster membership, acquiring new data sen-
sitive to ipsative variations should be a priority.
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Conclusions and Management Implications

The analysis model proposed here can be expected to be a "better"
model than a variety of alternatives. Although the appropriate resemblance
coefficient arrived at for the model defined by Equation 1 is not new, it is
correct for that model. A variety of literature offers improvements to rp and
makes unqualified statements about the superiority of these alternatives. One
can argue, however, that the "cosine" is the appropriate distance measure
for attitudes like performance that have an absolute zero. Given no model,
one can propose measures may have technical merit (e.g., the use of non-
parametric statistics when the distribution is unknown), but this is a separate
issue. In cases where the model defined by Equation 1 is a good fit to reality,
the rp method of measuring distance is appropriate. If the data conform to
Equation 5, the "cosine" measure is appropriate.

It is important to recognize that analysis based on rp can produce valid
results when Euclidean and other resemblance coefficients do not detect a
structure (Aldenderfer & Blashfield, 1984, p. 59). More importantly, cluster-
ing with an inappropriate resemblance coefficient (e.g., Euclidean) can ac-
tually detect an invalid structure when data conform to Equation 1. However,
rp is valid for data that conform to both Equations 1 and 2, subject to ex-
amination of IMj. This means that where Equations 1 or 2 may apply, using
the rp based distance approach offers valid estimates regardless of whether
the Equation 1 model is really needed. Even if data are expected to be
approximated by Equation 2, we believe that one should use an rp based
distance when there is a pattern to detect and a chance that ipsative effects
will distort Euclidean distance. On the other hand, if the data are best ap-
proximated by Equation 5, using rp is statistically inefficient and may produce
invalid clusters.

When Equation 1 applies, an rp type measure minimizes ipsative bias in
defining a spatial relationship among objects. Such reductions in bias in-
crease the likelihood of finding valid clusters. Adopting the procedures de-
scribed here can increase one's trust in the quality of the findings. From a
research perspective, Equation 1 will achieve efficiencies in the use of data.
Because "extraneous" variance related to individuals is appropriately elimi-
nated, one can collect less data than necessary if ipsative variance is treated
as part of "residual error." Getting more accurate results with less data and
having valid clusters to be used in analysis in making decisions are good
reasons to use a function of rp.

Getting valid clusters has ramifications for management. This work arose
out of importance-performance analysis that was seen to be questionable
because valid social aggregates were not recognized by Euclidean distance
clustering (Stanley & Beaman, 1993). Starting analysis by denying the exis-
tence of competing user groups yields invalid results if such groups exist.
Finding invalid clusters by using an inappropriate distance measure is a waste
of resources. Failure to recognize social aggregates renders claims of client
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orientation research meaningless. Given the suggested model, researchers
using attitude scales have an approach to finding valid social aggregates for
planners and managers to consider in relation to their proposed actions.
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